Phương pháp tìm tiệm cận đứng bằng casio TUYỂN TẬP tìm số tiệm cận đứng bằng máy tính
Phương pháp tìm tiệm cận đứng của đồ thị bằng máy tính Casio FX 500VN PLUS.
TÌM TIỆM CẬN ĐỨNG CỦA HÀM SỐ BẰNG MÁY TÍNH CASIO
Định nghĩa: Đường thẳng $x = {x_0}$ được gọi là tiệm cận đứng của đồ thị hàm số $y = f(x)$nếu thỏa một trong bốn điều kiện sau:
Phương pháp:
Bước 1. Tìm các giá trị của ${x_0}$ sao cho hàm số $y = f(x)$không xác định (Thông thường ta cho mẫu số bằng 0)
Bước 2.
+ Tính $\mathop {\lim }\limits_{x \to {x_0}^ + } f(x)$ bằng máy tính casio. Nhập $f(x)$-> nhấn CALC -> chọn $x = {x_0} + 0,00001$.
+ Tính $\mathop {\lim }\limits_{x \to {x_0}^ – } f(x)$ bằng máy tính casio. Nhập $f(x)$-> nhấn CALC -> chọn $x = {x_0} – 0,00001$.
Kết quả có 4 dạng sau:
+ Một số dương rất lớn, suy ra giới hạn bằng $ + \infty \,$.
+ Một số âm rất nhỏ, suy ra giới hạn bằng $ – \infty \,$.
+ Một số có dạng ${\rm{A}}{.10^{ – n}}$, suy ra giới hạn bằng $0$.
+ Một số có dạng bình thường là B. Suy ra giới hạn bằng B hoặc gần bằng B.
Câu 1. Tìm các tiệm cận đứng của đồ thị hàm số $y = \frac{{4x – 3}}{{x – 5}}$
Giải: Cho $x – 5 = 0 \Leftrightarrow x = 5$
+Tính $\mathop {\lim }\limits_{x \to {5^ + }} \frac{{4x – 3}}{{x – 5}} = + \infty $$ \Rightarrow x = 5$là tiệm cận đứng
+Tính $\mathop {\lim }\limits_{x \to {5^ + }} \frac{{4x – 3}}{{x – 5}} = – \infty $$ \Rightarrow x = 5$là tiệm cận đứng
Vậy đồ thị hàm số có 1 tiệm cận đứng là x = 5
Câu 2. Tìm các tiệm cận đứng của đồ thị hàm số $y = \frac{{2{x^2} – 5x + 3}}{{x – 1}}$
Giải:
Cho x- 1 = 0 suy ra x= 1
+$\mathop {\lim }\limits_{x \to {1^ + }} \frac{{2{x^2} – 5x + 3}}{{x – 1}} = – 1$
+$\mathop {\lim }\limits_{x \to {1^ – }} \frac{{2{x^2} – 5x + 3}}{{x – 1}} = – 1$
Vậy x= 1 không là tiệm cận đứng. Tóm lại đồ thị hàm số không có tiệm cận đứng
Câu 3. Tìm các tiệm cận đứng của đồ thị hàm số $y = \frac{{3{x^2} + 7x – 10}}{{{x^2} – 2x – 3}}$
Cho ${x^2} – 2x – 3 = 0 \Leftrightarrow x = – 1;x = 3$
+$\mathop {\lim }\limits_{x \to – {1^ + }} \frac{{3{x^2} + 7x – 10}}{{{x^2} – 2x – 3}} = + \infty $
+$\mathop {\lim }\limits_{x \to – {1^ – }} \frac{{3{x^2} + 7x – 10}}{{{x^2} – 2x – 3}} = – \infty $
Suy ra x = -1 là tiệm cận đứng.
+$\mathop {\lim }\limits_{x \to {3^ + }} \frac{{3{x^2} + 7x – 10}}{{{x^2} – 2x – 3}} = + \infty $
+$\mathop {\lim }\limits_{x \to {3^ – }} \frac{{3{x^2} + 7x – 10}}{{{x^2} – 2x – 3}} = – \infty $
Suy ra x= 3 là tiệm cận đứng.
Vậy đồ thị hàm số có 2 tiệm cận đứng là x= -1 và x = 3
Câu 4. (ĐỀ THPT QG 2017) Tìm số tiệm cận đứng của đồ thị hàm số $y = \frac{{{x^2} – 3x – 4}}{{{x^2} – 16}}$ .
Vậy đồ thị hàm số có 1 tiệm cận đứng là x = -4
Câu 5. (ĐỀ THPT QG 2018) Số tiệm cận đứng của đồ thị hàm số $y = \frac{{\sqrt {x + 9} – 3}}{{{x^2} + x}}$ là
Cho ${x^2} + x = 0 \Leftrightarrow x = 0;x = – 1$
$\mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sqrt {x + 9} – 3}}{{{x^2} + x}} = 0,1666……$
$\mathop {\lim }\limits_{x \to {0^ – }} \frac{{\sqrt {x + 9} – 3}}{{{x^2} + x}} = 0,1666……$
Suy ra x= 0 không là tiệm cận đứng
$\mathop {\lim }\limits_{x \to – {1^ + }} \frac{{\sqrt {x + 9} – 3}}{{{x^2} + x}} = + \infty $
$\mathop {\lim }\limits_{x \to – {1^ – }} \frac{{\sqrt {x + 9} – 3}}{{{x^2} + x}} = – \infty $
Câu 6. (ĐỀ MINH HỌA THPT QG 2017) Tìm tiệm cận đứng của đồ thị hàm số $y = \frac{{2x – 1 – \sqrt {{x^2} + x + 3} }}{{{x^2} – 5x + 6}}$ là
Giải
${x^2} – 5x + 6 = 0 \Leftrightarrow x = 2;x = 3$
Câu 7. Tìm số tiệm cận đứng của đồ thị hàm số $y = \frac{{\sqrt {2{x^2} + 7} – x – 2}}{{{x^2} – 4x + 3}}$
, còn dưới đây là hệ thống lý thuyết và hướng dẫn cách bấm
Hy vọng với cách tìm số đường tiệm cận bằng máy tính casio ở trên sẽ giúp bạn giải các bài toán trắc nghiệm của BGD&ĐT tới đây một cách hiệu quả
Phương pháp tìm tiệm cận đứng của đồ thị bằng máy tính Casio FX 500VN PLUS.
TÌM TIỆM CẬN ĐỨNG CỦA HÀM SỐ BẰNG MÁY TÍNH CASIO
- Phương Pháp:
Định nghĩa: Đường thẳng $x = {x_0}$ được gọi là tiệm cận đứng của đồ thị hàm số $y = f(x)$nếu thỏa một trong bốn điều kiện sau:
- $\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = + \infty \,( – \infty )$
- $\mathop {\lim }\limits_{x \to {x_0}^ – } f(x) = + \infty \,( – \infty )$
Phương pháp:
Bước 1. Tìm các giá trị của ${x_0}$ sao cho hàm số $y = f(x)$không xác định (Thông thường ta cho mẫu số bằng 0)
Bước 2.
+ Tính $\mathop {\lim }\limits_{x \to {x_0}^ + } f(x)$ bằng máy tính casio. Nhập $f(x)$-> nhấn CALC -> chọn $x = {x_0} + 0,00001$.
+ Tính $\mathop {\lim }\limits_{x \to {x_0}^ – } f(x)$ bằng máy tính casio. Nhập $f(x)$-> nhấn CALC -> chọn $x = {x_0} – 0,00001$.
Kết quả có 4 dạng sau:
+ Một số dương rất lớn, suy ra giới hạn bằng $ + \infty \,$.
+ Một số âm rất nhỏ, suy ra giới hạn bằng $ – \infty \,$.
+ Một số có dạng ${\rm{A}}{.10^{ – n}}$, suy ra giới hạn bằng $0$.
+ Một số có dạng bình thường là B. Suy ra giới hạn bằng B hoặc gần bằng B.
- Các ví dụ:
Câu 1. Tìm các tiệm cận đứng của đồ thị hàm số $y = \frac{{4x – 3}}{{x – 5}}$
Giải: Cho $x – 5 = 0 \Leftrightarrow x = 5$
+Tính $\mathop {\lim }\limits_{x \to {5^ + }} \frac{{4x – 3}}{{x – 5}} = + \infty $$ \Rightarrow x = 5$là tiệm cận đứng
+Tính $\mathop {\lim }\limits_{x \to {5^ + }} \frac{{4x – 3}}{{x – 5}} = – \infty $$ \Rightarrow x = 5$là tiệm cận đứng
Vậy đồ thị hàm số có 1 tiệm cận đứng là x = 5
Câu 2. Tìm các tiệm cận đứng của đồ thị hàm số $y = \frac{{2{x^2} – 5x + 3}}{{x – 1}}$
Giải:
Cho x- 1 = 0 suy ra x= 1
+$\mathop {\lim }\limits_{x \to {1^ + }} \frac{{2{x^2} – 5x + 3}}{{x – 1}} = – 1$
+$\mathop {\lim }\limits_{x \to {1^ – }} \frac{{2{x^2} – 5x + 3}}{{x – 1}} = – 1$
Vậy x= 1 không là tiệm cận đứng. Tóm lại đồ thị hàm số không có tiệm cận đứng
Câu 3. Tìm các tiệm cận đứng của đồ thị hàm số $y = \frac{{3{x^2} + 7x – 10}}{{{x^2} – 2x – 3}}$
Cho ${x^2} – 2x – 3 = 0 \Leftrightarrow x = – 1;x = 3$
+$\mathop {\lim }\limits_{x \to – {1^ + }} \frac{{3{x^2} + 7x – 10}}{{{x^2} – 2x – 3}} = + \infty $
+$\mathop {\lim }\limits_{x \to – {1^ – }} \frac{{3{x^2} + 7x – 10}}{{{x^2} – 2x – 3}} = – \infty $
Suy ra x = -1 là tiệm cận đứng.
+$\mathop {\lim }\limits_{x \to {3^ + }} \frac{{3{x^2} + 7x – 10}}{{{x^2} – 2x – 3}} = + \infty $
+$\mathop {\lim }\limits_{x \to {3^ – }} \frac{{3{x^2} + 7x – 10}}{{{x^2} – 2x – 3}} = – \infty $
Suy ra x= 3 là tiệm cận đứng.
Vậy đồ thị hàm số có 2 tiệm cận đứng là x= -1 và x = 3
Câu 4. (ĐỀ THPT QG 2017) Tìm số tiệm cận đứng của đồ thị hàm số $y = \frac{{{x^2} – 3x – 4}}{{{x^2} – 16}}$ .
- 2. B. 3. C. 1. D. 0.
Vậy đồ thị hàm số có 1 tiệm cận đứng là x = -4
Câu 5. (ĐỀ THPT QG 2018) Số tiệm cận đứng của đồ thị hàm số $y = \frac{{\sqrt {x + 9} – 3}}{{{x^2} + x}}$ là
Cho ${x^2} + x = 0 \Leftrightarrow x = 0;x = – 1$
$\mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sqrt {x + 9} – 3}}{{{x^2} + x}} = 0,1666……$
$\mathop {\lim }\limits_{x \to {0^ – }} \frac{{\sqrt {x + 9} – 3}}{{{x^2} + x}} = 0,1666……$
Suy ra x= 0 không là tiệm cận đứng
$\mathop {\lim }\limits_{x \to – {1^ + }} \frac{{\sqrt {x + 9} – 3}}{{{x^2} + x}} = + \infty $
$\mathop {\lim }\limits_{x \to – {1^ – }} \frac{{\sqrt {x + 9} – 3}}{{{x^2} + x}} = – \infty $
- $3$. B. $2$. C. $0$. D. $1$.
Câu 6. (ĐỀ MINH HỌA THPT QG 2017) Tìm tiệm cận đứng của đồ thị hàm số $y = \frac{{2x – 1 – \sqrt {{x^2} + x + 3} }}{{{x^2} – 5x + 6}}$ là
- $x = – 3;x = – 2$. B. $x = 3$ C. $x = 3;x = 2$ D. $x = 2$.
Giải
${x^2} – 5x + 6 = 0 \Leftrightarrow x = 2;x = 3$
Câu 7. Tìm số tiệm cận đứng của đồ thị hàm số $y = \frac{{\sqrt {2{x^2} + 7} – x – 2}}{{{x^2} – 4x + 3}}$
- $3$. B. $2$ C. $0$. D. $1$.
Hy vọng với cách tìm số đường tiệm cận bằng máy tính casio ở trên sẽ giúp bạn giải các bài toán trắc nghiệm của BGD&ĐT tới đây một cách hiệu quả
TỆP ĐÍNH KÈM
Tệp đính kèm đã được mở. Bạn có thể tải tài nguyên dưới đây.
CÁC TỆP ĐÍNH KÈM (6)
BẠN MUỐN MUA TÀI NGUYÊN NÀY?
Các tệp đính kèm trong chủ đề này cần được thanh toán để tải. Chi phí tải các tệp đính kèm này là 0 VND. Dành cho khách không muốn tham gia gói THÀNH VIÊN VIP
GIÁ TỐT HƠN
Gói thành viên VIP
- Tải được file ở nhiều bài
- Truy cập được nhiều nội dung độc quyền
- Không quảng cáo, không bị làm phiền
- Tải tài nguyên đề thi, giáo án... từ khối 1-12
- Tải mở rộng sáng kiến, chuyên đề, báo cáo...
- Được tư vấn, hỗ trợ qua zalo 0979.702.422
🔥 Chỉ từ
200K
Mua gói lẻ
- Chỉ tải duy nhất toàn bộ file trong bài đã mua
- Cần mua file ở bài khác nếu có nhu cầu tải
- Tốn kém cho những lần mua tiếp theo
- Được tư vấn, hỗ trợ qua zalo 0979.702.422
0 VND
Sau khi thanh toán thành công, hệ thống sẽ tự động chuyển hướng bạn về trang download tài liệu
HƯỚNG DẪN ĐĂNG KÝ THÀNH VIÊN THƯỜNG