Yopovn

Team YOPO
Thành viên BQT
28/1/21
90,332
812
113
Đề thi học kì 2 lớp 12 môn Toán có lời giải chi tiết NĂM 2022 MỚI NHẤT

YOPOVN xin gửi đến quý thầy cô, các em học sinh Đề thi học kì 2 lớp 12 môn Toán có lời giải chi tiết NĂM 2022 MỚI NHẤT. Đây là bộ Đề thi học kì 2 lớp 12 môn Toán có lời giải chi tiết.


Tìm kiếm có liên quan​


De thi giữa học kì 2 lớp 12 môn Toánđáp án trắc nghiệm file word violet

De
thi giữa kì 2 lớp 12 môn Toán trắc nghiệmđáp an

Đề
thi Toán lớp 12 học kì 2 năm 2020 2021

Đề
thi học kì 2 Toán 12 có lời giải chi tiết

Đề thi HK1 Toán 12 có đáp án chi tiết

Đề thi HK2 Toán 12 có đáp án chi tiết

De thi học kì 2 lớp 12 môn Văn

Lịch
thi học kì 2 lớp 12 năm 2021

SỞ GIÁO DỤC VÀ ĐÀO TẠO
ĐỀ CHÍNH THỨC​
.................


(Đề gồm có 03 trang)
KIỂM TRA CUỐI HỌC KỲ II NĂM HỌC 2021 - 2022
Môn: TOÁN – Lớp 12

Thời gian: 60 phút (không kể thời gian giao đề)
MÃ ĐỀ


Họ và tên học sinh:
………………………………………………….………….Lớp:……………

Câu 1. Tìm số thuần ảo trong các số phức sau đây

A. . B. . C. . D. .

Câu 2. Nếu và thì bằng

A. . B. . C. . D. .

Câu 3. Nếu thì bằng

A. . B. . C. . D. .

Câu 4. Cho là một nguyên hàm của hàm số trên . Mệnh đề nào sau đây đúng?

A. . B. .

C. . D. .

Câu 5. Trong không gian , vectơ có tọa độ là

A. . B. . C. . D. .


Câu 6. Số phức liên hợp của số phức là

A. . B. . C. . D. .

Câu 7. Trong không gian , mặt phẳng nào sau đây đi qua gốc tọa độ?

A. . B. .

C. . D. .

Câu 8. Trong không gian , tích vô hướng của hai vectơ và bằng

A. . B. . C. . D. .

Câu 9. bằng

A. . B. . C. . D. .

Câu 10. Trên mặt phẳng tọa độ, điểm biểu diễn của số phức có tọa độ là

A. . B. . C. . D. .

Câu 11. Trong không gian với hệ tọa độ cho cho hai điểm và . Tọa độ của vectơ là

A. . B. . C. . D. .

Câu 12. Họ tất cả các nguyên hàm của hàm số là

A. . B. . C. . D. .

Câu 13. Tính .

A. . B. .

C. . D. .

Câu 14. Trong không gian , mặt cầu có bán kính bằng

A. . B. . C. . D.
Câu 15.
Trong không gian , đường thẳng vuông góc với mặt phẳng có một vectơ chỉ phương là

A. . B. . C. . D. .

Câu 16. Trong không gian , cho tứ diện với và mặt phẳng có phương trình . Chiều cao của tứ diện bằng

A. . B. . C. . D. .

Câu 17. Trong không gian , cho hai điểm và . Mặt phẳng vuông góc với tại điểm có phương trình

A. . B. .

C. . D. .

Câu 18. Khi tìm nguyên hàm , bằng cách đặt ta được nguyên hàm nào sau đây?

A. . B. . C. . D. .

Câu 19. Cho số phức và . Số phức bằng

A. . B. . C. . D. .

Câu 20. Cho hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và các đường thẳng , . Khối tròn xoay tạo thành khi quay quanh trục hoành có thể tích bằng

A. . B. . C. . D. .

Câu 21. Cho số phức thoả mãn . Phần ảo của bằng

A. . B. . C. . D. .

Câu 22. Biết trong đó là các số nguyên. Tính .

A. . B. . C. . D. .

Câu 23. Hàm số nào sau đây là một nguyên hàm của hàm số ?

A. . B. . C. . D. .

Câu 24. Cho số phức thỏa mãn . Môđun của số phức bằng

A. . B. . C. . D. .

Câu 25. Trong không gian , đường thẳng đi qua hai điểm có phương trình tham số là

A. . B. . C. . D. .

Câu 26. Có tất cả bao nhiêu số phức thỏa mãn là số thực và ?

A. 2. B. 1. C. 4. D. 3.

Câu 27. Cho hàm số có đồ thị và là tiếp tuyến với tại điểm có hoành độ (tham khảo hình vẽ bên).

Diện tích hình phẳng giới hạn bởi , và trục hoành bằng

A. . B. . C. . D. .

Câu 28. Trong không gian cho mặt phẳng vuông góc với mặt phẳng và cắt các trục lần lượt tại với sao cho thể tích khối tứ diện bằng . Giá trị bằng

A. . B. . C. . D. .

Câu 29. Cho số phức thỏa mãn là số thuần ảo. Trên mặt phẳng tọa độ , tập hợp điểm biểu diễn số phức là đường tròn có bán kính bằng

A. . B. . C. . D. .

Câu 30. Trong không gian , cho mặt cầu có tâm và cắt trục tại hai điểm , sao cho . Phương trình mặt cầu là:

A. . B. .

C. . D. .

Câu 31. Trong không gian , cho mặt phẳng : ; điểm và mặt cầu có tâm cắt mặt phẳng theo giao tuyến là đường tròn có bán kính . Biết rằng mọi điểm thuộc thì là tiếp tuyến của . Giá trị của bằng:

A. . B. . C. . D. .

Câu 32. Cho hàm số có đạo hàm liên tục trên , thỏa mãn với mọi và . Giá trị thuộc khoảng nào sau đây?

A. . B. . C. . D. .



ĐÁP ÁN VÀ LỜI GIẢI CHI TIẾT

BẢNG ĐÁP ÁN

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
D
C
A
A
A
C
A
D
D
C
B
A
C
B
D
B
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
D
A
C
A
C
C
D
C
C
D
A
C
C
D
D
D



LỜI GIẢI CHI TIẾT



Câu 1. Tìm số thuần ảo trong các số phức sau đây

A. . B. . C. . D. .

Lời giải

Chọn D

Số phức thuần ảo là

Câu 2. Nếu và thì bằng

A. . B. . C. . D. .

Lời giải



Chọn C

Ta có .

Câu 3. Nếu thì bằng

A. . B. . C. . D. .

Lời giải



Chọn A

Ta có .

Câu 4. Cho là một nguyên hàm của hàm số trên . Mệnh đề nào sau đây đúng?

  • A. . B. .
  • C. . D. .

Lời giải


Chọn A

Ta có: .

Câu 5. Trong không gian , vectơ có tọa độ là

A. . B. . C. . D. .

Lời giải


Chọn A

Ta có: suy ra .



Câu 6. Số phức liên hợp của số phức là

A. . B. . C. . D. .

Lời giải


Chọn C

Ta có: suy ra .


Câu 7. Trong không gian , mặt phẳng nào sau đây đi qua gốc tọa độ?

A. . B. .

C. . D. .

Lời giải


Chọn A

Thay tọa độ vào phương trình mặt phẳng ta được: .

Vậy đi qua gốc tọa độ.

Câu 8. Trong không gian , tích vô hướng của hai vectơ và bằng

A. . B. . C. . D. .

Lời giải


Chọn D

.

Câu 9. bằng

A. . B. . C. . D. .

Lời giải


Chọn D

Ta có: .

Câu 10. Trên mặt phẳng tọa độ, điểm biểu diễn của số phức có tọa độ là

A. . B. . C. . D. .

Lời giải


Chọn C

Câu 11. Trong không gian với hệ tọa độ cho cho hai điểm và . Tọa độ của vectơ là

A. . B. . C. . D. .

Lời giải


Chọn B

Ta có .

Câu 12. Họ tất cả các nguyên hàm của hàm số là

A. . B. . C. . D. .

Lời giải


Chọn A


Ta có .



Câu 13. Tính .

A. . B. .

C. . D. .

Lời giải


Chọn C

Áp dụng công thức nguyên hàm, ta có .

Câu 14. Trong không gian , mặt cầu có bán kính bằng

A. . B. . C. . D.
Lời giải


Chọn A

Mặt cầu , suy ra bán kính .

Câu 15. Trong không gian , đường thẳng vuông góc với mặt phẳng có một vectơ chỉ phương là

A. . B. . C. . D. .

Lời giải


Chọn D

Mặt phẳng có VTPT là .

Đường thẳng vuông góc với mặt phẳng suy ra VTCP của đường thẳng cùng phương với VTPT của mặt phẳng hay .

Chọn suy ra ta có một VTCP của đường thẳng là .

Câu 16. Trong không gian , cho tứ diện với và mặt phẳng có phương trình . Chiều cao của tứ diện bằng

A. . B. . C. . D. .

Lời giải


Chọn B

  • w Chiều cao của tứ diện là khoảng cách từ đến .
  • Khi đó ta có .

Câu 17. Trong không gian , cho hai điểm và . Mặt phẳng vuông góc với tại điểm có phương trình

A. . B. .

C. . D. .

Lời giải


Chọn D

w Ta có .

w Do nên ta chọn có VTPT .

Suy ra phương trình là .

  • Câu 18. Khi tìm nguyên hàm , bằng cách đặt ta được nguyên hàm nào sau đây?
  • A. . B. . C. . D. .

Lời giải


Chọn A

  • w Đặt .
  • w Vậy ta có với .



Câu 19. Cho số phức và . Số phức bằng

A. . B. . C. . D. .

Lời giải


Chọn C


Ta có .

Câu 20. Cho hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và các đường thẳng , . Khối tròn xoay tạo thành khi quay quanh trục hoành có thể tích bằng

A.. B. . C. . D. .

Lời giải


Chọn A

Thể tích khối tròn xoay cần tính là .

Câu 21. Cho số phức thoả mãn . Phần ảo của bằng

A.. B. . C. . D. .

Lời giải


Chọn C

Đặt .

Theo đề


Vậy phần ảo của số phức là .

Câu 22. Biết trong đó là các số nguyên. Tính .

A. . B. . C. . D. .

Lời giải


Chọn C


Đặt .

Ta có: .

Vậy .

Câu 23. Hàm số nào sau đây là một nguyên hàm của hàm số ?

A. . B. . C. . D. .

Lời giải


Chọn D


Ta có: .

Đặt .

Khi đó:
là một nguyên hàm của hàm .

Câu 24. Cho số phức thỏa mãn . Môđun của số phức bằng

A. . B. . C. . D. .

Lời giải


Chọn C


Ta có: .

Câu 25. Trong không gian , đường thẳng đi qua hai điểm có phương trình tham số là

A. . B. . C. . D. .

Lời giải


Chọn C

Ta có .

Phương trình đường thẳng đi qua điểm và nhận véctơ là véctơ chỉ phương
Câu 26. Có tất cả bao nhiêu số phức thỏa mãn là số thực và ?

A. 2. B. 1. C. 4. D. 3.

Lời giải


Chọn D

Gọi số phức .

Theo giả thiết có là số thực nên .

Mặt khác .

Từ đó, ta có hệ
Vậy có 3 số phức thỏa mãn yêu cầu bài toán.

Câu 27. Cho hàm số có đồ thị và là tiếp tuyến với tại điểm có hoành độ (tham khảo hình vẽ bên).

Diện tích hình phẳng giới hạn bởi , và trục hoành bằng

A. . B. . C. . D. .

Lời giải


Chọn A



Ta có .

Phương trình tiếp tuyến biết là .

Giao điểm của với trục hoành là .

Từ hình vẽ ta thấy, diện tích hình phẳng giới hạn bởi , và trục hoành là

.

Câu 28. Trong không gian cho mặt phẳng vuông góc với mặt phẳng và cắt các trục lần lượt tại với sao cho thể tích khối tứ diện bằng . Giá trị bằng

A. . B. . C. . D. .

Lời giải


Chọn D

Do mặt phẳng cắt các trục lần lượt tại nên .

Khi đó có véc tơ pháp tuyến là: .

Mặt phẳng có véc tơ pháp tuyến là: .

Vì (1).

Ta có . Theo bài ra thì .

Từ (1) suy ra .

Câu 29. Cho số phức thỏa mãn là số thuần ảo. Trên mặt phẳng tọa độ , tập hợp điểm biểu diễn số phức là đường tròn có bán kính bằng

A. . B. . C. . D. .

Lời giải


Chọn C

Đặt .

Ta có

.

Khi đó là số thuần ảo
.

Vậy tập hợp điểm biểu diễn số phức là đường tròn có bán kính là .



Câu 30. Trong không gian , cho mặt cầu có tâm và cắt trục tại hai điểm , sao cho . Phương trình mặt cầu là:

  • A. . B. .
  • C. . D. .

Lời giải


Chọn D


  • w Gọi là hình chiếu của tâm lên trục : Þ .
  • w Bán kính mặt cầu là: .
  • w Phương trình mặt cầu là: .



Câu 31. Trong không gian , cho mặt phẳng : ; điểm và mặt cầu có tâm cắt mặt phẳng theo giao tuyến là đường tròn có bán kính . Biết rằng mọi điểm thuộc thì là tiếp tuyến của . Giá trị của bằng:

A. . B. . C. . D. .

Lời giải


Chọn D


  • Ta có: .
  • Do mọi điểm thuộc thì là tiếp tuyến của nên thuộc mặt cầu tâm . Mặt cầu này cắt mặt cầu theo giao là đường tròn nên hình chiếu của và trên mặt phẳng đều là tâm của đường tròn .
  • Do là tiếp tuyến của nên và nằm khác phía so với mặt phẳng và tam giác vuông tại nên .
  • Mặt phẳng có một vector pháp tuyến
  • Do nên có một vector chỉ phương là
  • Phương trình :
  • Do nên tọa độ thỏa mãn hệ:
  • ; ; .

Câu 32. Cho hàm số có đạo hàm liên tục trên , thỏa mãn với mọi và . Giá trị thuộc khoảng nào sau đây?

A. . B. . C. . D. .

1648993729837.png

XEM THÊM:
 
TỆP ĐÍNH KÈM
Tệp đính kèm đã được mở. Bạn có thể tải tài nguyên dưới đây.

CÁC TỆP ĐÍNH KÈM (2)

  1. YOPOVN.COM-De-Thi-thu-HK2-mon-Toan-12-2021-2022.docx
    Dung lượng tệp: 894.5 KB

MỜI CÁC BẠN THAM KHẢO VIP

LIÊN HỆ ĐĂNG KÝ VIP THÀNH VIÊN

Để lên VIP vui lòng tham khảo ĐĂNG KÝ GÓI VIP.

Tư vấn Hỗ trợ đăng ký VIP qua Zalo:

Zalo 0979 702 422

BÀI VIẾT MỚI