- Tham gia
- 28/1/21
- Bài viết
- 86,154
- Điểm
- 113
tác giả
TÀI LIỆU Chuyên đề bồi dưỡng hsg toán 8 LINK DRIVER được soạn dưới dạng file word gồm 144 trang. Các bạn xem và tải về ở dưới.
Chuyên đề bồi dưỡng hsg toán 8
A. Kiến thức:
* Tam giác đồng dạng:
a) trường hợp thứ nhất: (c.c.c)
ABC A’B’C’
b) trường hợp thứ nhất: (c.g.c)
ABC A’B’C’ ;
c. Trường hợp đồng dạng thứ ba (g.g)
ABC A’B’C’ ;
AH; A’H’là hai đường cao tương ứng thì: = k (Tỉ số đồng dạng); = K2
B. Bài tập áp dụng
Bài 1:
Cho ABC có , AB = 8 cm, BC = 10 cm.
a)Tính AC
b)Nếu ba cạnh của tam giác trên là ba số tự nhiên liên tiếp thì mỗi cạnh là bao nhiêu?
Giải
Cách 1:
Trên tia đối của tia BA lấy điểm E sao cho:BD = BC
ACD ABC (g.g)
= AB(AB + BC)
= 8(10 + 8) = 144 AC = 12 cm
Cách 2:
Vẽ tia phân giác BE của ABE ACB
= 8(8 + 10) = 144
AC = 12 cm
b) Gọi AC = b, AB = a, BC = c thì từ câu a ta có b2 = a(a + c) (1)
Vì b > anên có thể b = a + 1 hoặc b = a + 2
+ Nếu b = a + 1 thì (a + 1)2 = a2 + ac 2a + 1 = ac a(c – 2) = 1
a = 1; b = 2; c = 3(loại)
+ Nếu b = a + 2 thì a(c – 4) = 4
- Với a = 1 thì c = 8 (loại)
- Với a = 2 thì c = 6 (loại)
- với a = 4 thì c = 6 ; b = 5
Vậy a = 4; b = 5; c = 6
Bài 2:
Cho ABC cân tại A, đường phân giác BD; tính BD
biết BC = 5 cm; AC = 20 cm
Giải
Ta có CD = 4 cm và BC = 5 cm
Bài toán trở về bài 1
Bài 3:
Cho ABC cân tại A và O là trung điểm của BC. Một điểm O di động trên AB, lấy điểm E trên AC sao cho . Chứng minh rằng
a) DBO OCE
b) DOE DBO OCE
c) DO, EO lần lượt là phân giác của các góc BDE, CED
d) khoảng cách từ O đến đoạn ED không đổi khi D di động trên AB
Giải
a) Từ và (gt) DBO OCE
b) Từ câu a suy ra (1)
Vì B, O ,C thẳng hàng nên (2)
trong tam giác EOC thì (3)
Từ (1), (2), (3) suy ra
DOE và DBO có (Do DBO OCE)
và (Do OC = OB) và
nên DOE DBO OCE
c) Từ câu b suy ra DO là phân giác của các góc BDE
Củng từ câu b suy ra EO là phân giác của các góc CED
c) Gọi OH, OI là khoảng cách từ O đến DE, CE thì OH = OI, mà O cố định nên OH không đổi OI không đổi khi D di động trên AB
Bài 4: (Đề HSG huyện Lộc hà – năm 2007 – 2008)
Cho ABC cân tại A, có BC = 2a, M là trung điểm BC, lấy D, E thuộc AB, AC sao cho
a) Chứng minh tích BD. CE không đổi
b)Chứng minh DM là tia phân giác của
c) Tính chu vi của AED nếu ABC là tam giác đều
Giải
a) Ta có , mà (gt)
nên , kết hợp với ( ABC cân tại A)
suy ra BDM CME (g.g)
không đổi
b) BDM CME
(do BM = CM) DME DBM (c.g.c) hay DM là tia phân giác của
c) chứng minh tương tự ta có EM là tia phân giác của
kẻ MH CE ,MI DE, MK DB thì MH = MI = MK DKM = DIM
DK =DI EIM = EHM EI = EH
Chu vi AED là PAED = AD + DE + EA = AK +AH = 2AH (Vì AH = AK)
ABC là tam giác đều nên suy ra CME củng là tam giác đều CH =
AH = 1,5a PAED = 2 AH = 2. 1,5 a = 3a
Bài 5:
THẦY CÔ, CÁC EM TẢI NHÉ
Chuyên đề bồi dưỡng hsg toán 8
CHUYÊN ĐỀ 13 – CÁC BÀI TOÁN VỀ TAM GIÁC ĐỒNG DẠNG
A. Kiến thức:
* Tam giác đồng dạng:
a) trường hợp thứ nhất: (c.c.c)
ABC A’B’C’
b) trường hợp thứ nhất: (c.g.c)
ABC A’B’C’ ;
c. Trường hợp đồng dạng thứ ba (g.g)
ABC A’B’C’ ;
AH; A’H’là hai đường cao tương ứng thì: = k (Tỉ số đồng dạng); = K2
B. Bài tập áp dụng
Bài 1:
Cho ABC có , AB = 8 cm, BC = 10 cm.
a)Tính AC
b)Nếu ba cạnh của tam giác trên là ba số tự nhiên liên tiếp thì mỗi cạnh là bao nhiêu?
Giải
Cách 1:
Trên tia đối của tia BA lấy điểm E sao cho:BD = BC
ACD ABC (g.g)
= AB(AB + BC)
= 8(10 + 8) = 144 AC = 12 cm
Cách 2:
Vẽ tia phân giác BE của ABE ACB
= 8(8 + 10) = 144
AC = 12 cm
b) Gọi AC = b, AB = a, BC = c thì từ câu a ta có b2 = a(a + c) (1)
Vì b > anên có thể b = a + 1 hoặc b = a + 2
+ Nếu b = a + 1 thì (a + 1)2 = a2 + ac 2a + 1 = ac a(c – 2) = 1
a = 1; b = 2; c = 3(loại)
+ Nếu b = a + 2 thì a(c – 4) = 4
- Với a = 1 thì c = 8 (loại)
- Với a = 2 thì c = 6 (loại)
- với a = 4 thì c = 6 ; b = 5
Vậy a = 4; b = 5; c = 6
Bài 2:
Cho ABC cân tại A, đường phân giác BD; tính BD
biết BC = 5 cm; AC = 20 cm
Giải
Ta có CD = 4 cm và BC = 5 cm
Bài toán trở về bài 1
Bài 3:
Cho ABC cân tại A và O là trung điểm của BC. Một điểm O di động trên AB, lấy điểm E trên AC sao cho . Chứng minh rằng
a) DBO OCE
b) DOE DBO OCE
c) DO, EO lần lượt là phân giác của các góc BDE, CED
d) khoảng cách từ O đến đoạn ED không đổi khi D di động trên AB
Giải
a) Từ và (gt) DBO OCE
b) Từ câu a suy ra (1)
Vì B, O ,C thẳng hàng nên (2)
trong tam giác EOC thì (3)
Từ (1), (2), (3) suy ra
DOE và DBO có (Do DBO OCE)
và (Do OC = OB) và
nên DOE DBO OCE
c) Từ câu b suy ra DO là phân giác của các góc BDE
Củng từ câu b suy ra EO là phân giác của các góc CED
c) Gọi OH, OI là khoảng cách từ O đến DE, CE thì OH = OI, mà O cố định nên OH không đổi OI không đổi khi D di động trên AB
Bài 4: (Đề HSG huyện Lộc hà – năm 2007 – 2008)
Cho ABC cân tại A, có BC = 2a, M là trung điểm BC, lấy D, E thuộc AB, AC sao cho
a) Chứng minh tích BD. CE không đổi
b)Chứng minh DM là tia phân giác của
c) Tính chu vi của AED nếu ABC là tam giác đều
Giải
a) Ta có , mà (gt)
nên , kết hợp với ( ABC cân tại A)
suy ra BDM CME (g.g)
không đổi
b) BDM CME
(do BM = CM) DME DBM (c.g.c) hay DM là tia phân giác của
c) chứng minh tương tự ta có EM là tia phân giác của
kẻ MH CE ,MI DE, MK DB thì MH = MI = MK DKM = DIM
DK =DI EIM = EHM EI = EH
Chu vi AED là PAED = AD + DE + EA = AK +AH = 2AH (Vì AH = AK)
ABC là tam giác đều nên suy ra CME củng là tam giác đều CH =
AH = 1,5a PAED = 2 AH = 2. 1,5 a = 3a
Bài 5:
THẦY CÔ, CÁC EM TẢI NHÉ