- Tham gia
- 28/1/21
- Bài viết
- 86,154
- Điểm
- 113
tác giả
Toán lớp 8 chương 1 tứ giác CHỦ ĐỀ 8. VẼ HÌNH PHỤ ĐỂ GIẢI TOÁN TRONG CHƯƠNG TỨ GIÁC
CHỦ ĐỀ 8. VẼ HÌNH PHỤ ĐỂ GIẢI TOÁN TRONG CHƯƠNG TỨ GIÁC
A. Kiến thức cần nhớ
Nhiều bài toán trong chương tứ giác cần phải vẽ hình phụ thì mới giải được. Vẽ hình phụ để tạo thêm sự liên kết giữa giả thiết và kết luận từ đó dễ tìm ra cách giải. Một số cách vẽ hình phụ thường dùng trong chương này là:
1. Nếu đề bài có hình thang thì từ một đỉnh có thể vẽ thêm một đường thẳng:
- song song với một cạnh bên;
- song song với một đường chéo;
- vuông góc với đáy.
Khi vẽ như vậy, một đoạn thẳng đã được dời song song với chính nó từ vị trí này đến một vị trí khác thuận lợi hơn trong việc liên kết với các yếu tố khác, từ đó giải được bài toán.
2. Vẽ thêm hình bình hành
Để chứng minh hai đường thẳng song song, chứng minh quan hệ về độ dài, chứng minh ba đường thẳng đồng quy, ba điểm thẳng hàng, tính số đo góc,…
3. Vẽ thêm trung điểm của đoạn thẳng
+ Để vận dụng định lí đường trung bình của tam giác, của hình thang, định lí đường trung tuyến ứng với cạnh huyền của tam giác vuông.
+ Cũng có thể vẽ thêm đường thẳng song song để tạo ra đường trung bình của tam giác, hình thang.
+ Dùng định lí đường trung bình có thể chứng minh các quan hệ song song, thẳng hàng, các quan hệ về độ dài,…
4. Vẽ điểm đối xứng với một điểm cho trước qua một đường thẳng hoặc qua một điểm.
Nhờ cách vẽ này ta cũng có thể dời một đoạn thẳng, một góc từ vị trí này sang vị trí khác thuận lợi cho việc chứng minh.
B. BÀI TẬP VẬN DỤNG.
I. MỘT SỐ VÍ DỤ.
Ví dụ 1. Chứng minh rằng trong một hình thang tổng hai cạnh bên lớn hơn hiệu hai cạnh đáy.
* Tìm cách giải
Xét hình thang ABCD (AB // CD), ta phải chứng minh AD + BC > CD - AB.
Điều phải chứng minh rất gần với bất đẳng thức tam giác. Điều này gợi ý cho ta vẽ hình phụ để có AD + BC là tổng các độ dài hai cạnh của một tam giác.
* Trình bày lời giải
Vẽ BM // AD (M Î CD) ta được DM = AB và BM = AD.
Xét DBMC có BM + BC > MC Þ AD + BC > DC – DM
hay AD + BC > CD – AB (đpcm).
Trường hợp hai cạnh bên song song thì hai đáy bằng nhau, bài toán hiển nhiên đúng.
Ví dụ 2. Cho hình thang ABCD (AB // CD), hai đường chéo vuông góc với nhau. Biết AB = 5cm, CD = 12cm và AC = 15cm. Tính độ dài BD.
CHỦ ĐỀ 8. VẼ HÌNH PHỤ ĐỂ GIẢI TOÁN TRONG CHƯƠNG TỨ GIÁC
A. Kiến thức cần nhớ
Nhiều bài toán trong chương tứ giác cần phải vẽ hình phụ thì mới giải được. Vẽ hình phụ để tạo thêm sự liên kết giữa giả thiết và kết luận từ đó dễ tìm ra cách giải. Một số cách vẽ hình phụ thường dùng trong chương này là:
1. Nếu đề bài có hình thang thì từ một đỉnh có thể vẽ thêm một đường thẳng:
- song song với một cạnh bên;
- song song với một đường chéo;
- vuông góc với đáy.
Khi vẽ như vậy, một đoạn thẳng đã được dời song song với chính nó từ vị trí này đến một vị trí khác thuận lợi hơn trong việc liên kết với các yếu tố khác, từ đó giải được bài toán.
2. Vẽ thêm hình bình hành
Để chứng minh hai đường thẳng song song, chứng minh quan hệ về độ dài, chứng minh ba đường thẳng đồng quy, ba điểm thẳng hàng, tính số đo góc,…
3. Vẽ thêm trung điểm của đoạn thẳng
+ Để vận dụng định lí đường trung bình của tam giác, của hình thang, định lí đường trung tuyến ứng với cạnh huyền của tam giác vuông.
+ Cũng có thể vẽ thêm đường thẳng song song để tạo ra đường trung bình của tam giác, hình thang.
+ Dùng định lí đường trung bình có thể chứng minh các quan hệ song song, thẳng hàng, các quan hệ về độ dài,…
4. Vẽ điểm đối xứng với một điểm cho trước qua một đường thẳng hoặc qua một điểm.
Nhờ cách vẽ này ta cũng có thể dời một đoạn thẳng, một góc từ vị trí này sang vị trí khác thuận lợi cho việc chứng minh.
B. BÀI TẬP VẬN DỤNG.
I. MỘT SỐ VÍ DỤ.
Ví dụ 1. Chứng minh rằng trong một hình thang tổng hai cạnh bên lớn hơn hiệu hai cạnh đáy.
Giải
* Tìm cách giải
Xét hình thang ABCD (AB // CD), ta phải chứng minh AD + BC > CD - AB.
Điều phải chứng minh rất gần với bất đẳng thức tam giác. Điều này gợi ý cho ta vẽ hình phụ để có AD + BC là tổng các độ dài hai cạnh của một tam giác.
* Trình bày lời giải
Vẽ BM // AD (M Î CD) ta được DM = AB và BM = AD.
Xét DBMC có BM + BC > MC Þ AD + BC > DC – DM
hay AD + BC > CD – AB (đpcm).
Trường hợp hai cạnh bên song song thì hai đáy bằng nhau, bài toán hiển nhiên đúng.
Ví dụ 2. Cho hình thang ABCD (AB // CD), hai đường chéo vuông góc với nhau. Biết AB = 5cm, CD = 12cm và AC = 15cm. Tính độ dài BD.