- Tham gia
- 28/1/21
- Bài viết
- 86,007
- Điểm
- 113
tác giả
Bài tập trắc nghiệm to hợp xác suất file word TUYỂN TẬP bài tập trắc nghiệm về nhị thức niu tơn CÓ ĐÁP ÁN RẤT HAY
Dưới đây là bài tập trắc nghiệm tổ hợp xác suất, nhị thức Bài tập trắc nghiệm to hợp xác suất file word TUYỂN TẬP bài tập trắc nghiệm về nhị thức niu tơn CÓ ĐÁP ÁN RẤT HAY.Niu Tơn có đáp án và lời giải. Bài tập bao gồm các chủ đề: Quy tắt đếm; Hoán vị; Chỉnh hợp; Tổ hợp; Nhị thức Niu-Tơn; Xác suất. Mỗi dạng bài tập đều có tóm tắt các lý thuyết và bài tập trắc nghiệm đa dạng có lời giải. Bài tập được viết dưới dạng file word gồm 64 trang. Các bạn xem và tải về ở dưới.
A. LÝ THUYẾT
1. Quy tắc cộng
Một công việc được hoàn thành bởi một trong hai hành động. Nếu hành động này có m cách thực hiên, hành động kia có n cách thực hiên không trùng với bất kì cách nào của hành động thứ nhất thì công việc đó có m + n cách thực hiện.
Chú ý: số phần tử của tập hợp hữu hạn X được kí hiệu là |X| hoặc n(X)
Quy tắc cộng được phát biểu ở trên thực chất là quy tắc đếm số phần tử của hợp hai tập hợp hữu hạn không giao nhau: Nếu A và B là các tập hợp hữu hạn không giao nhau thì
Mở rộng: Một công việc được hoàn thành bởi một trong k hành động
.Nếu hành động A1 có m1cách thực hiện, hành động A2 có m2 cách thực hiện,…, hành động Ak có mk cách thực hiện và các cách thực hiên của các hành động trên không trùng nhau thì công việc đó có cách thực hiện.
2. Quy tắc nhân
Một công việc được hoàn thành bởi hai hành động liên tiếp.Nếu có m cách thực hiện hành động thứ nhất và ứng với mỗi cách đó có n cách thực hiện hành động thứ hai thì công việc đó có m.n cách thực hiện.
Mở rộng: Một công việc được hoàn thành bởi k hành độngliên tiếp. Nếu hành động A1 có m1cách thực hiện, ứng với mỗi cách thực hiện hành động A1 có m2 cách thực hiện hành động A2,…, có mk cách thực hiện hành động Ak thì công việc đó có cách hoàn thành.
HOÁN VỊ- CHỈNH HỢP- TỔ HỢP
1. Hoán vị
Cho tập hợp A có n phần tử . Mỗi kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A được gọi là một hoán vị của n phần tử đó. Số các hoán vị của tập hợp có n phần tử được kí hiệu là Pn
Định lí 1: với Pn là số các hoán vị
Việc sắp xếp thứ tự n phần tử của tập hợp A là một công việc gồm n công đoạn.
Công đoạn 1: Chọn phần tử xếp vào vị trí thứ nhất: n cách
Công đoạn 2: chọn phần tử xếp vào vị trí thứ hai: (n-1) cách
Công đoạn thứ i: chọn phần tử xếp vào vị trí thứ i có cách.
Công đoạn thứ n: chọn phần tử xếp vào vị trí thứ n có 1 cách.
Theo quy tắc nhân thì có cách sắp xếp thứ tự n phần tử của tập A, tức là có hoán vị.
2. Chỉnh hợp
Cho tập A gồm n phần tử .
Kết quả của việc lấy k phần tử khác nhau tử n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó được gọi là một chinht hợp chập k của n phần tử đã cho.
Định lý 2: với là số các chỉnh hợp chập k của n phần tử .
Chứng minh
Việc thiết lập một chỉnh hợp chập k của tập A có n phần tử là một công việc gồm k công đoạn.
Công đoạn 1: Chọn phần tử xếp vào vị trí thứ nhất có n cách thực hiện.
Công đoạn 2: Chọn phần tử xếp vào vị trí thứ hai có cách thực hiện.
Dưới đây là bài tập trắc nghiệm tổ hợp xác suất, nhị thức Bài tập trắc nghiệm to hợp xác suất file word TUYỂN TẬP bài tập trắc nghiệm về nhị thức niu tơn CÓ ĐÁP ÁN RẤT HAY.Niu Tơn có đáp án và lời giải. Bài tập bao gồm các chủ đề: Quy tắt đếm; Hoán vị; Chỉnh hợp; Tổ hợp; Nhị thức Niu-Tơn; Xác suất. Mỗi dạng bài tập đều có tóm tắt các lý thuyết và bài tập trắc nghiệm đa dạng có lời giải. Bài tập được viết dưới dạng file word gồm 64 trang. Các bạn xem và tải về ở dưới.
CHỦ ĐỀ 2. TỔ HỢP – XÁC SUẤT
QUY TẮC ĐẾM
QUY TẮC ĐẾM
A. LÝ THUYẾT
1. Quy tắc cộng
Một công việc được hoàn thành bởi một trong hai hành động. Nếu hành động này có m cách thực hiên, hành động kia có n cách thực hiên không trùng với bất kì cách nào của hành động thứ nhất thì công việc đó có m + n cách thực hiện.
Chú ý: số phần tử của tập hợp hữu hạn X được kí hiệu là |X| hoặc n(X)
Quy tắc cộng được phát biểu ở trên thực chất là quy tắc đếm số phần tử của hợp hai tập hợp hữu hạn không giao nhau: Nếu A và B là các tập hợp hữu hạn không giao nhau thì
Mở rộng: Một công việc được hoàn thành bởi một trong k hành động
.Nếu hành động A1 có m1cách thực hiện, hành động A2 có m2 cách thực hiện,…, hành động Ak có mk cách thực hiện và các cách thực hiên của các hành động trên không trùng nhau thì công việc đó có cách thực hiện.
2. Quy tắc nhân
Một công việc được hoàn thành bởi hai hành động liên tiếp.Nếu có m cách thực hiện hành động thứ nhất và ứng với mỗi cách đó có n cách thực hiện hành động thứ hai thì công việc đó có m.n cách thực hiện.
Mở rộng: Một công việc được hoàn thành bởi k hành độngliên tiếp. Nếu hành động A1 có m1cách thực hiện, ứng với mỗi cách thực hiện hành động A1 có m2 cách thực hiện hành động A2,…, có mk cách thực hiện hành động Ak thì công việc đó có cách hoàn thành.
HOÁN VỊ- CHỈNH HỢP- TỔ HỢP
1. Hoán vị
Cho tập hợp A có n phần tử . Mỗi kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A được gọi là một hoán vị của n phần tử đó. Số các hoán vị của tập hợp có n phần tử được kí hiệu là Pn
Định lí 1: với Pn là số các hoán vị
chứng minh
Việc sắp xếp thứ tự n phần tử của tập hợp A là một công việc gồm n công đoạn.
Công đoạn 1: Chọn phần tử xếp vào vị trí thứ nhất: n cách
Công đoạn 2: chọn phần tử xếp vào vị trí thứ hai: (n-1) cách
Công đoạn thứ i: chọn phần tử xếp vào vị trí thứ i có cách.
.
Công đoạn thứ n: chọn phần tử xếp vào vị trí thứ n có 1 cách.
Theo quy tắc nhân thì có cách sắp xếp thứ tự n phần tử của tập A, tức là có hoán vị.
STUDY TIP Hai hoán vị của n phần tử chỉ khác nhau ở thứ tự sắp xếp. Chẳng hạn, hai hoán vị abc và acb của ba phần tử a, b, c là khác nhau. |
2. Chỉnh hợp
Cho tập A gồm n phần tử .
Kết quả của việc lấy k phần tử khác nhau tử n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó được gọi là một chinht hợp chập k của n phần tử đã cho.
STUDY TIP: Từ định nghĩa ta thấy một hoán vị của tập hợp A có n phần tử là một chỉnh hợp chập n của A. |
Định lý 2: với là số các chỉnh hợp chập k của n phần tử .
Chứng minh
Việc thiết lập một chỉnh hợp chập k của tập A có n phần tử là một công việc gồm k công đoạn.
Công đoạn 1: Chọn phần tử xếp vào vị trí thứ nhất có n cách thực hiện.
Công đoạn 2: Chọn phần tử xếp vào vị trí thứ hai có cách thực hiện.
.
Sau khi thực hiện xong công đoạn (chọn phần tử của A vào các vị trí thứ 1, 2,., ), công đoạn thứ i tiếp theo là chọn phần tử xếp vào vị trí thứ i có cách thực